Search results for "Beltrami operator"

showing 6 items of 6 documents

On Lp resolvent estimates for Laplace–Beltrami operators on compact manifolds

2014

In this article we prove Lp estimates for resolvents of Laplace–Beltrami operators on compact Riemannian manifolds, generalizing results of Kenig, Ruiz and Sogge (1987) in the Euclidean case and Shen (2001) for the torus. We follow Sogge (1988) and construct Hadamard's parametrix, then use classical boundedness results on integral operators with oscillatory kernels related to the Carleson and Sjölin condition. Our initial motivation was to obtain Lp Carleman estimates with limiting Carleman weights generalizing those of Jerison and Kenig (1985); we illustrate the pertinence of Lp resolvent estimates by showing the relation with Carleman estimates. Such estimates are useful in the constructi…

Hadamard parametrixLaplace–Beltrami operatorMathematics::Analysis of PDEsresolventoscillatory integralsMathematics::Spectral TheoryCarleman estimates
researchProduct

Milton’s conjecture on the regularity of solutions to isotropic equations

2003

Abstract We present examples showing that the threshold for the integrability of the gradient of solutions to isotropic equations is 2K/(K−1). The main tools are p-laminates and Beltrami Operators.

Partial differential equationConjectureApplied MathematicsBeltrami operatorMathematical analysisIsotropyHölder conditionMathematical PhysicsAnalysisMathematicsAnnales de l'Institut Henri Poincaré C, Analyse non linéaire
researchProduct

On $L^p$ resolvent estimates for Laplace-Beltrami operators on compact manifolds

2011

Abstract. In this article we prove Lp estimates for resolvents of Laplace–Beltrami operators on compact Riemannian manifolds, generalizing results of Kenig, Ruiz and Sogge (1987) in the Euclidean case and Shen (2001) for the torus. We follow Sogge (1988) and construct Hadamard's parametrix, then use classical boundedness results on integral operators with oscillatory kernels related to the Carleson and Sjölin condition. Our initial motivation was to obtain Lp Carleman estimates with limiting Carleman weights generalizing those of Jerison and Kenig (1985); we illustrate the pertinence of Lp resolvent estimates by showing the relation with Carleman estimates. Such estimates are useful in the …

Pure mathematicsLaplace transformParametrixApplied MathematicsGeneral MathematicsMathematics::Analysis of PDEsTorusInverse problemAbsolute continuityMathematics::Spectral TheoryMathematics - Analysis of PDEsLaplace–Beltrami operatorEuclidean geometryFOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]ResolventMathematicsAnalysis of PDEs (math.AP)
researchProduct

Connexion markovienne, courbure et formule de Weitzenböck sur l'espace des chemins riemanniens

2001

Resume Nous considerons la connexion markovienne sur l'espace des chemins riemanniens. Le tenseur de courbure est calcule explicitement et une formula de Weitzenbock est etablie.

Pure mathematicsProbability theoryRiemann manifoldBeltrami operatorVector fieldGeneral MedicineCurvatureLaplace operatorMathematicsConnection (mathematics)Comptes Rendus de l'Académie des Sciences - Series I - Mathematics
researchProduct

Markovian Connection, Curvature and Weitzenböck Formula on Riemannian Path Spaces

2001

Abstract We shall consider on a Riemannian path space P m o ( M ) the Cruzeiro–Malliavin's Markovian connection. The Laplace operator will be defined as the divergence of the gradient. We shall compute explicitly the associated curvature tensor. A Weitzenbock formula will be established. To this end, we shall introduce an “inner product” between the tangent processes and simple vector fields.

Riemann curvature tensorCurvature of Riemannian manifoldsMathematical analysisConnection (mathematics)symbols.namesakeLaplace–Beltrami operatorsymbolsCurvature formSectional curvatureMathematics::Differential GeometryAnalysisRicci curvatureMathematicsScalar curvatureJournal of Functional Analysis
researchProduct

A sharp estimate for Neumann eigenvalues of the Laplace-Beltrami operator for domains in a hemisphere

2018

Here, we prove an isoperimetric inequality for the harmonic mean of the first [Formula: see text] non-trivial Neumann eigenvalues of the Laplace–Beltrami operator for domains contained in a hemisphere of [Formula: see text].

isoperimetric inequalitiesPure mathematicsNeumann eigenvaluesApplied MathematicsGeneral MathematicsHarmonic meanOperator (physics)Mathematics::Spectral TheoryMathematics - Analysis of PDEsLaplace–Beltrami operatorLaplace-Beltrami operatorSettore MAT/05 - Analisi MatematicaFOS: MathematicssphereIsoperimetric inequalityEigenvalues and eigenvectorsAnalysis of PDEs (math.AP)Mathematics
researchProduct